

ETA6210 (WINCE) Wifi 扩展模块应用手册

感谢您购买英创信息技术有限公司的产品: ETA6210(WINCE)Wifi扩展模块。

您可以访问英创公司网站或直接与英创公司联系以获得ETA6210的其他相关资料。

英创信息技术有限公司联系方式如下:

地址:成都市高新区高朋大道5号博士创业园B座407#邮编:610041

联系电话: 028-86180660 传真: 028-85141028

网址: <u>http://www.emtronix.com</u> 电子邮件: <u>support@emtronix.com</u>

ETA6210 简介

ETA6210 是一款标准 miniPCle 尺寸的 WiFi 通讯模块,模块核心芯片为 NXP 的 iMX6UL 和 AP6181 WiFi 芯片。英创公司 WINCE 工控主板是通过 miniPCle 上的 USB 接口来操作 ETA6210 模块的。在实际应用中,ETA6210 是插在客户底板的 miniPCle 插座上使用。开发评估阶段,可插在英创的 ESMARC EVB 评估底板的 miniPCle 插座 上使用,也可利用 ETA303 模块转换成标准 USB 接口使用。

ETA6210本身预装有完整的操作系统,在上电后自动进行 WIFI 连接。并同时打开 3 路虚拟串口 COM10-12 与 WINCE 工控主板进行通信:一路(COM10)用 AT 指令进行参 数设置,模块控制等。一路(COM11)用于网络透传。一路(COM12)备用。

ETA6210 网络模式与常规 WIFI 模块略有区别。ETA6210 直接连入 WIFI 网络,同时作为路由器接受嵌入式主板的连接。ETA6210 将 WIFI 网络中的数据直接透传给嵌入式主板,所以对于嵌入式主板而言,与直接连入 WIFI 网络没有区别,只是无法直接调用 API 函数获得 WIFI 网络中的 IP, MASK, 网关, 而是需要通过 AT 指令访问 ETA6210获得。

连接到 WIFI 网络后,可以使用 SOCKET 编程访问网络。

安装

ETA6210 可以通过 miniPCle 直接连接到英创 ESMARC 底板上,也可以通过 ETA303 模块转接到板子 USB 上。图 1 和图 2 显示它们的连接关系。

图、ETA303

英创工控主板将在最新内核中支持 ETA6210,用户可以接上主板后直接使用。使用 原内核的客户可以联系英创工程师获得 ETA6210 驱动安装程序。

使用方法

英创公司提供完整代码的源程序供客户参考,在开始阶段,客户可以直接使用编译 好的界面程序进行测试。

界面程序 APConnect 简介

将英创提供的 APConnect 程序放入工控主板运行,可以见到如下界面。

AP	连接		OK ×
	SSID	信号	状态
0	NETGEAR69	70	
1	HP-Print-2	38	
2	Emtronix.20	70	

界面上部显示有附近的 WIFI 服务器列表。

双击列表中需要连接的服务器 SSID, 在弹出窗口中输入密码, 及选择好相应选项, 进行连接。

	AP连接			ок 🗙	
		SSID	信号	状态	
	0	NETGEAR69	70		
	1	HP-Print-2	38		
	2	Emtronix.20	70		
NE	TG	EAR69			×
SS	ID [NETGEAR69	信号	号强度 70	
密	码	12345678	[- 无密码	
₽	自知	定义IP		连接	
I	Ρ	192. 168. 1. 33		[1
M	ASK	255.255.255.0		· 修改	L
	啾关	,			
mb					ъa

连接成功后会有成功提示。

英创提供 APConn 程序源码,客户可以根据自身需要进行修改。

接口介绍

英创提供的例程 ETA6210Set 是对 ETA6210 模块进行配置的示例例程。例程将

ETA6210 模块接口封装到了 class ETA6210 类中, ETA6210 主要 PUBLIC 接口如下:

```
class ETA6210
{
public:
    ETA6210(void);
    ~ETA6210(void);
    ~ETA6210(void);
    BOOL CreateEntry();
    BOOL GetState(LinkStates *plinkStates);
    BOOL GetAPList(APInfo *papInfo, int maxnum, int *pnum);
    DWORD ConnectAP(char *ssid, char *password, BOOL bDhcp, IPInfo
*IpInfo);
    BOOL DisconnectAP();
    BOOL GetIPInfo(IPInfo *pIpInfo);
    BOOL SetIPInfo(IPInfo *pIpInfo);
    BOOL SetIPInfo(IPInfo *pIpInfo);
};
```

```
4个文件。并定义 ETA6210 类
```

#include "ETA6210.h"

ETA6210 eta6210;

ETA6210 模块初始化

使用 ETA6210 首先需要创建拨号连接。拨号连接只需要创建一次,重复创建不会 产生变化,不会返回失败。

函数原型

BOOL CreateEntry();

返回值

调用成功返回 TRUE,失败返回 FALSE。

调用实例

bRet = eta6210.CreateEntry();

查询 wifi 列表

查询 ETA6210 能够搜索到的附近 AP,并将它们存入结构体数组中返回。

函数原型

```
BOOL GetAPList(APInfo *papInfo, int maxnum, int *pnum);
```

参数

```
papInfo 指向 APInfo 结构体数组指针,当调用成功, AP 信息将依次存
```

入结构体数组中。

maxnum 传入的结构体数组大小。

pnum 返回的 AP 数量,不会超过 maxnum。

返回值

调用成功返回 TRUE,失败返回 FALSE。

参数结构体定义

struct APInfo

```
{
          ssid[50]:
                       //ssid
   char
   char
          mac[18];
                       //mac ca:d7:19:d8:a6:44
          channel;
   int
                       //rssi 信号强度
   int
          rssi;
   int
          ecn;
                       //加密方式:OPEN,WEP,WPA_PSK,WPA2_PSK,
WPA WPA2 PSK
          freqoffset;
                           //频偏
   int
          freqcalibration; //频率校准
   int
};
```

调用实例

```
APInfo apInfo[15];
int n;
bRet = eta6210.GetAPList(apInfo, 15, &n);
```

连接 WIFI

设置要连接的 WIFI 热点的 SSID, 及密码,并拨号连接。

函数原型

DWORD ConnectAP(char *ssid, char *password, BOOL bDhcp, IPInfo *IpInfo);

参数

ssid AP 名称,如果为空,则使用上次连接的 SSID。

password AP 密码,如果为空,则使用上次使用的密码。

bDhcp AP 是否使用 DHCP 进行 IP 分配,对于无 DHCP 的 AP,此参数必须为 TRUE,并设置 lplnfo 参数里的 IP 信息。

 IpInfo
 当连接无 DHCP 的 AP 时,必须设置 IP 及 MASK 参数。当连接

 DHCP 的 AP 时,此参数无效,可以设置为 NULL。

返回值

连接为 DWORD, 定义如下:

- 0 成功
- -1 设置 SSID 失败

- -2 设置密码失败
- -3 连接 AP 失败
- -4 AP 不支持 DHCP, 且未设置 IP
- -5 设置 IP 失败
- -6 拨号失败

调用实例

bRet = eta6210.ConnectAP("emtronix.20", "0987654321", FALSE,

NULL);

或

```
bRet = eta6210.ConnectAP(NULL, NULL, FALSE, NULL); //使用上
次的 SSID 及密码
```

断开连接

断开 WIFI 连接。

函数原型

BOOL DisconnectAP();

返回值

成功断开返回 TRUE,失败返回 FALSE。

调用实例

bRet = eta6210.DisconnectAP();

查询模块状态

查询模块当前状态。包括模块是否处于连接状态,连接的 AP 的 SSID。

函数原型

BOOL GetState(LinkStates *plinkStates);

参数

plinkStates 指向 LinkStates 结构体,记录模块网络是否连接成功,及

连接的 SSID 名,及信号强度。

返回值

调用成功返回 TRUE,失败返回 FALSE。

参数结构体定义

```
struct LinkStates
```

int rssi; //信号强度	char ssid[50]; //ssi int rssi: //信号	d 引强度
------------------	--	----------

}

{

调用实例

```
LinkStates linkStates;
bRet = eta6210.GetState(&linkStates);
```

查询网络参数

因为英创嵌入式主板只连接到 ETA6210 模块的内部网络中,ETA6210 再连接到 WIFI 网络并将数据透传给英创嵌入式主板。嵌入式主板通过 API 只能获得内部网络里的 IP, 必须通过以下接口函数获得在 WIFI 网络里的 IP, MASK, 网关参数。

函数原型

BOOL GetIP(IPInfo *pIpInfo);

参数

plpInfo 指向 lpInfo 结构体,储存有连接到 WIFI 中时的网络 IP, mask 及网关。

返回值

调用成功返回 TRUE,失败返回 FALSE。

参数结构体定义

```
struct IPInfo
{
    char ip[16];
    char gw[16];
    char mask[16];
};
```

调用实例

```
IPInfo ipInfo;
bRet = eta6210.GetIP(&ipInfo);
```

设置网络参数

设置模块连入 WIFI 网络里的网络参数,如,在做 TCP 服务器时需要用到。

函数原型

```
BOOL SetIP(IPInfo *pIpInfo);
```

参数

plpInfo 指向 lpInfo 结构体,将要设置的网络 IP, mask 及网关填入结构体中,如果为空字符串"",则该项不设置,任使用原参数。

返回值

调用成功返回 TRUE,失败返回 FALSE。

参数结构体定义

```
struct IPInfo
{
    char ip[16];
    char gw[16];
    char mask[16];
};
```

J **,**

调用实例

```
IPInfo ipInfo;
bRet = eta6210.GetIP(&ipInfo);
sprintf(ipInfo.ip, "192.168.201.248");
sprintf(ipInfo.gw, "192.168.201.19");
sprintf(ipInfo.mask, "255.255.255.0");
bRet = eta6210.SetIP(&ipInfo);
```

SOCKET 编程示例

拨号成功后,可以使用 SOCKET 进行网络通信。 以英创开发光盘里的例程为例。

TCP 客户端 C#例程

参考英创开发光盘中 C#例程 step4_tcptest 例程,不用修改例程即可直接进行调试。

连接服务端

通过 WIFI 网络,连接到服务器,并建立接收线程

```
try
   {
        rip = IPAddress.Parse(textBox rip.Text);
                                                                //IP
        rport = Convert. ToInt32(textBox_rport.Text);
                                                                //端
IPEndPoint rEP = new IPEndPoint(rip, rport);
                                                                //用
远程IP,端口初始一个IPEndPoint类
        cTcp = new TcpClient();
        cTcp. Connect (rEP);
        revThread = new Thread(new ThreadStart(waitforMessage));
        threadStop = false;
        revThread.Start(); //启动waitforMessage线程
   }
   catch(Exception ex)
    {
         MessageBox. Show("连接失败:");
         statusBar1.Text = (ex.Message);
         return:
    }
```

发送消息

```
byte[] OutBuffer;
int length;
OutBuffer = Encoding.Default.GetBytes(textBox_send.Text);
```

```
length = OutBuffer.Length;
cTcp.Client.Send(OutBuffer, length, 0);
```

消息接收线程函数

```
void waitforMessage() //客户机状态下接收数据线程
        {
            int i;
           byte[] InBuffer = new byte[1024];
           while (!threadStop)
            {
                i = cTcp. Client. Receive (InBuffer);
                if (i == 0)
                {
                    Invoke(new EventHandler(serverDisconnect));
//注意使用Invoke
                   return;
                }
               revstr = Encoding.Default.GetString(InBuffer, 0,
InBuffer.Length);
                Invoke(new EventHandler(textBox_rev_Show));
            }
        }
```

Emtronix EM917	70 TCP TEST例程	_ 🗆 ×
● 客户端		○ 服务端
服务器IP	192.168.201.11	侦听端口 6300
服务器端口	6800	
	连接	侦听
www.emtroni	x.com	
		发送
		▲ ▼

图、光盘 C#例程 step4_tcptest 测试图

TCP 服务端 C 例程

参考英创开发光盘中 C 例程 test tcp server 例程。并对例程稍作修改

获得 WIFI 口 IP

获得 WIFI 网口的 IP,并显示到 MFC 程序界面上。

```
m CEdit Name2. SetWindowText(L"ETA6210");
   bRet = GetNetWorkAdapterInfo( L"ETA6210", &AdptInfo );
   m IP2 = AdptInfo. IPAddr;
   wsprintf(wstr, L<sup>"</sup>%d.%d.%d.%d", m_IP2>>24, (m_IP2>>16)&0xff,
(m IP2>>8)&Oxff, m IP2&Oxff);
   m CEdit IP2. SetWindowText(wstr);
   m_CEdit_Port2. SetWindowText(L"5000");
```

打开服务端

```
初始化网络,创建 SOCKET 并绑定到 WIFI 网口,建立接收线程。
//1. 初始化socket资源
if (WSAStartup(MAKEWORD(1,1),&wsa) != 0)
{
   return -1;//代表失败
}
//2. 创建套接字
if ((m_socketServer = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP))<0)
{
   return -2;
}
//3. 绑定端口
SOCKADDR IN serverAddr;
ZeroMemory((char *)&serverAddr, sizeof(serverAddr));
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(m_dwPort);
```

```
serverAddr.sin_addr.s_addr = hton1(m_dwIP);
   if (bind(m socketServer, (struct sockaddr *)&serverAddr,
sizeof(serverAddr))<0)</pre>
   {
      return -3;
   }
   //4. 设置为侦听套接字,可同时响应个客户的连接请求
   if (listen(m socketServer, 8)!=0)
   {
      return -4;
   }
   //4. 设置监听套接字通讯模式为异步模式
   //DWORD ul= 1;
   //ioctlsocket(m socketServer, FIONBIO, &ul);
   //5. 创建侦听通讯线程, 在线程里, 等待客户端连接请求
   m bListenThreadStop = FALSE;
   m_hListenThread = CreateThread(NULL, 0, SocketListenThread, this,
0, NULL);
   if (m_hListenThread == NULL)
   {
      closesocket(m socketServer);
      return -5;
   }
```

发送消息

```
iLen = m_CEdit_Send1.GetWindowText(wstr, 1024);
iLen = WideCharToMultiByte(CP_ACP, 0, wstr, iLen, str, 1024, NULL,
NULL);
m_TCPServer1.Send(str, iLen);
```

消息接收线程函数

```
DWORD CTCPServer::SocketListenThread(PVOID 1param)
{
	CTCPServer *pTCPServer;
	//得到CTCPServer_CE实例指针
	pTCPServer = (CTCPServer*)1param;
	while (!pTCPServer->m_bListenThreadStop)
	{
```

```
SOCKADDR_IN clientAddr;
      int addrlen = sizeof(clientAddr);
      //等待客户端连接
      pTCPServer->m socketClient[0] =
accept(pTCPServer->m socketServer, (struct sockaddr *)&clientAddr,
&addrlen);
      if (pTCPServer->m_socketClient[0] > 0) //判定是否连接上了
       {
          pTCPServer->m revLen = recv(pTCPServer->m socketClient[0],
pTCPServer->m revbuf, sizeof(pTCPServer->m revbuf), 0);
          while (pTCPServer->m revLen > 0)
          {
             pTCPServer->OnRev(1param);
             pTCPServer->m revLen =
recv(pTCPServer->m_socketClient[0], pTCPServer->m_revbuf,
sizeof(pTCPServer->m revbuf), 0);
          }
      }
   }
   return 0;
}
```

注: 该例程设定的网口 2 由有线网口改为了 wifi,所以网络名修改为了"ETA6210",同时绑定 的 IP 需要设置为 ETA6210 内部网络的 IP, 默认"192.168.1.2"。但是本例测试时,连入到 WIFI 网 络中的 IP 通过接口函数 GetIP 查到是"192.168.201.112",所以测试 PC 连接的 TCP 服务端 IP 为 "192.168.201.112"而不是"192.168.1.2"

TCP测试	ок 🗙
「四口1 网络名 CPSW3G1 IP 192.168.201.248 端口 5000 开启 发送 test CPSW3G1 发送 接收	○K × 「网口2 网络名 ETA6210 IP 192.168.1.2 端口 5000 关闭 发送 test ETA6210 发送 接收 test tcpserver ▲

图、光盘 C 例程 test_tcp_server 测试图

网络测试

WIFI 网络内的 PC 可以通过 IP PING 通使用 ETA6210 的嵌入式主板,也可以通过 TELNET 连接到嵌入式主板中。

测试 ETA6210 可以满足正常的 WIFI 应用。

英创提供了例程及源代码,有需要的客户可以联系英创工程师

获得。