

ESM7000 工控主板系列数据手册

1. 概述

感谢您购买英创信息技术有限公司的产品: ESMARC 7000 工控主板。

ESMARC 是由英创公司发展的一套嵌入式主板与应用底板的连接规范, 意为英创智能模块架构(Emtronix Smart Module Architecture,以下简称 ESMARC),ESM7000 是符合 ESMARC 连接规范的工控主板系列产品,目前包括 ESM7000、ESM7100、ESM7080 和 ESM7180 几个型号。在本文中,除非特别说明,所有型号的主板均简称 ESM7000。

本手册详细介绍了 ESM7000 的硬件配置、管脚定义及相关的技术指标。此外,英创公司针对 ESM7000 的评估及应用,还编写有《ESMARC 开发评估底板手册》和《ESM7000 工控主板技术参考手册》,可相互参考。三个手册均包含在英创为用户提供的产品开发光盘里面,用户也可以登录英创公司的网站下载相关资料的最新版本。

1.1 主要技术指标

核心单元

- NXP i.MX7D 异构多核处理器,包含 ARM Cortex-A7 x 2 和 ARM Cortex-M4
- ARM Cortex-A7 主频 1GHz,ARM Cortex-M4 主频 240MHz
- 1GB DDR3 系统内存, 4GB eMMC 高速存储器
- 独立硬件实时时钟(RTC), 掉电时间保护, 典型功耗(3V / 1uA)
- 硬件看门狗 (WDT), 防止系统死锁
- 专用调试串口(115200, 8-N-1)

显示单元

- TFT 彩色 LCD 接口, 18-bit 并行 RGB 或 LVDS 接口可选
- 分辨率从 320×240 至 1366×768 均可支持
- 支持 4 线制电阻触摸屏,支持电容触摸屏多点触摸

通讯接口配置

- 1路千兆以太网接口 + 1路百兆以太网接口
- 2 路 CAN2.0B 总线接口, 与 GPIO 复用管脚

- 6 路标准 UART 串口,最高波特率 4.15Mbps
- 1 路 I2C 接口, 主控模式, 波特率 100kbps / 400kbps, 与 GPIO 复用管脚
- 1路 SPI 接口,主控全双工模式,最高波特率 52Mbps,与 GPIO 复用管脚

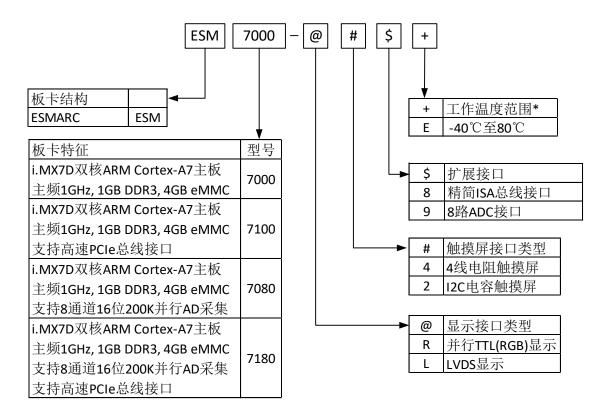
通用数字 IO

- 32 位通用 GPIOO GPIO31,各位方向独立可控。
- 部分 GPIO 与系统的其他功能复用管脚。
- GPIO 信号作为输入时,支持电平变化中断触发功能。
- 上电/复位后,GPIO 缺省模式为数字输入。

数据存储接口

- USB2.0 主控接口: 4路
- USB 接口支持 U 盘即插即用
- USB OTG 接口,支持 WEC7 的 ActiveSync 远程工具(仅 ESM7000)
- PCIe×1 高速接口支持 M.2 NVMe 固态硬盘(ESM7100/ESM7180)
- SD 卡接口,最大支持 32G SDHC 格式存储卡(SD 卡接口与 GPIO 复用管脚)

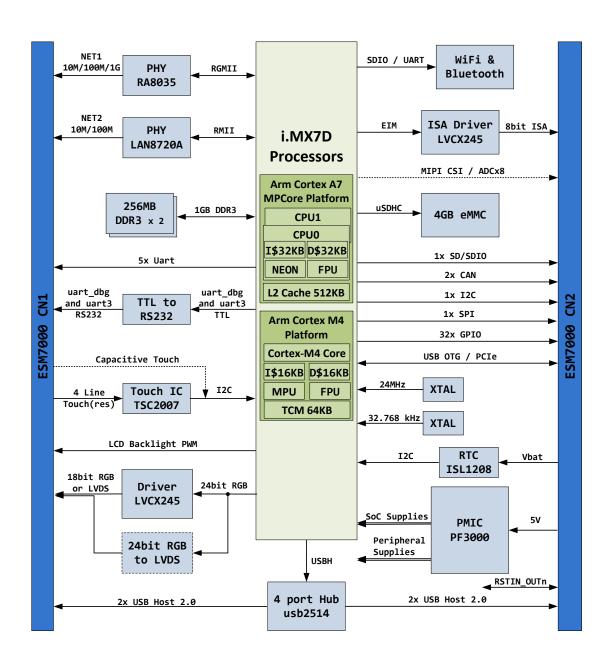
扩展接口


- 精简 ISA 总线,由 8 位地址数据复用总线及若干控制信号组成
- 精简 ISA 总线数据读写速率: 常规异步模式 > 4MB/s, 同步模式 > 11MB/s
- 8 路低 ADC 输入可选,输入信号单端 1.8V, AD 分辨率 14bit,采样率 1kSPS (ESM7000)
- 8 通道同步采样 ADC 可选,输入信号单端±5V / ±10V,AD 分辨率 16bit,采样率 20Hz 200kSPS (ESM7180/ESM7080)

电源及模块机械参数

- 供电电压: +5V ± 5%, 工作电流详见 4.4 节
- 主板供电电压检测、主板及 CPU 温度检测
- 工作温度范围: -40℃至 80℃
- ESMARC 架构, 主板外形尺寸: 74mm×54mm
- 2 个 66 芯坚固 IDC 三排排母(2mm 间距)对称分布于模块的两侧

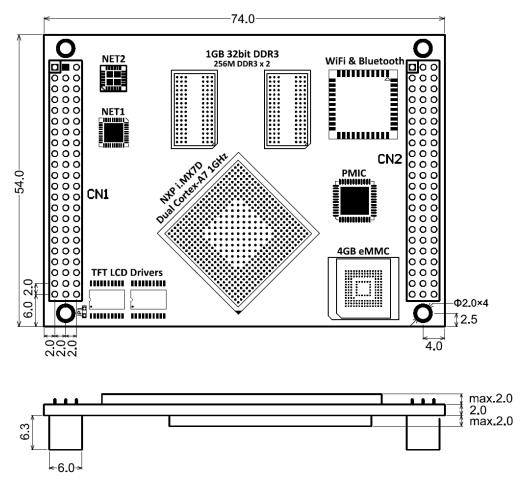
1.2 订购信息


ESM7000 有多种配置可供用户选择,更详细的订货信息请查询 ESM7000 的官方主页: http://www.emtronix.com/product/ESM7000.html ESM7000 订货型号命名规则如下:

*关于工作温度范围的说明: ESM7000 主板除主 CPU(i.MX7D)工作温度范围为-20℃~+125℃外,其它所有器件均满足-40℃~+80℃的工业级工作温度范围要求。ESM7000 均通过-40℃低温启动测试。

	不同产品型号的主要差异				
技术指标	ESM7000	ESM7100	ESM7080	ESM7180	简要说明
USB OTG	1 路	-	1路	-	支持微软 ActiveSync 远程调试 工具
PCle x 1	-	4	-	4	支持 M.2 NVMe 高速大容量固态硬盘
ADC	8路14-bit 低 速 AD 可选	-	8 通道 16-bit 同步采 样 ADC		
操作系统	WinCE7 / Linux	Linux	Linux	Linux	

1.3 ESM7000 原理框图



2. 英创智能模块架构

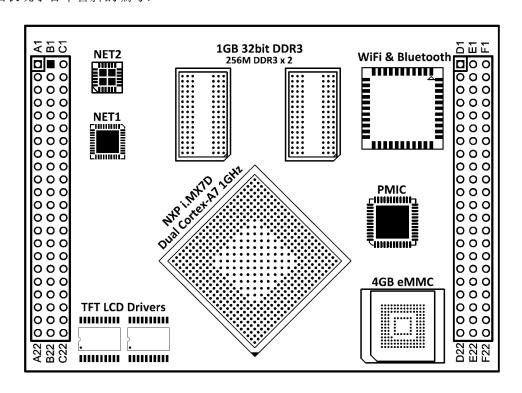
英创智能模块架构(Emtronix Smart Module Architecture,以下简称 ESMARC),是由英创公司发展的一套嵌入式主板与应用底板的连接规范。ESM7000 工控主板符合 ESMARC 连接规范。

2.1 外形尺寸

ESMARC 规范的主板外形尺寸为 74×54(mm),小于银行卡,在板的四角各有一个 Φ3 的固定孔位,如下图所示。对工作于强振动环境的设备,可利用该孔位进一步固定主板与应用底板的连接。

ESM7000 主板外形尺寸示意图(单位: mm)

ESM7000 工控主板完全符合 ESMARC 架构的机械尺寸,其主板上的元器件布局大致如上图所示。在 ESMARC 规范中,工控主板(这里为 ESM7000)是以模块形式,通过板上的两个排母,同时实现主板的机械固定以及与应用底板的信号连接两个功能。主板的两个连接器分别位于主板的左右两侧,为 2mm 间距的 三排排母,每排包括 22 个管脚,命名为 CN1 和 CN2。也就是说,ESM7000 正是通过 CN1 和 CN2 与应用底板连接在一起的。


ESM7000 与应用底板结构示意图

在主板上的连接器为 IDC (insulation-displacement contact) 类型的插座,而在应用底板上的为 IDC 插针,采用这样配置,可实现防插反功能。

2.2 ESMARC 连接器的管脚编号

6.0mm

ESMARC 的连接器为 3 列格式 IDC 连接器,列按字母 A、B、C、D、E、F 编号,而每列的管脚再按 1-22 编号。下图表现了各个管脚的编号:

ESM7000 的 CN1、CN2 所在位置示意图

从上图可见, A、B、C 三列属于连接器 CN1, 而 D、E、F 三列则包含在连接器 CN2; A 列和 F 列位于主板的两个外侧, 而 C 列和 D 列位于主板的内侧。主板上的所有器件都布局在 C、D 两列之间。

2.3 防插反机制

CN1 插座上的 B1 管脚被堵塞,而底板 CN1 的对应管脚插针被去掉。这样可保证 ESMARC 主板按正确的方向连接到底板上。

2.4 系统配置管脚

CN1 插座上的 B15 是系统特殊功能配置管脚,不用时需要直接悬空。

对于 ESM7000 而言,将 B15 短接到地意味着系统将支持 SD 卡功能,与 SD 卡复用的 GPIO 将自动配置为 SD 卡相应信号,对应的 IO 功能不能再被使用。

3. 管脚信号定义

ESM7000 的 CN1 和 CN2 共有 132 个管脚。根据所实现的功能所有不同,并不是每一款主板型号都会使 用全部的管脚资源。对主板没有定义的管脚,应用底板应视为系统保留,在具体的电路设计中,需保持这 些管脚处于悬空状态,禁止把这些管脚接地或接电源,否则会导致主板的电路损坏。

注意: ESM7000 的数字信号管脚均为 3.3V 电平, 与 5V TTL 电平不兼容。除非特殊说明,输入管脚必须 避免接入 5V 电平信号,外部 5V TTL 信号需进行电平转换方可接入 ESM7000 的信号管脚。

下面对 ESM7000 所有管脚信号列表逐一说明。下列表格中符号"←"表示信号定义与其左列相同,NC 表示未连接,需要悬空。

3.1 ESM7000 的 CN1 信号定义

ESM7000 的 CN1 主要包括以太网接口、异步串口、USB Host 接口和显示接口等。显示接口提供了 2 种类型供用户选择: (1) 并行 18-bit TTL RGB 显示接口, (2) LVDS 显示接口。对于触摸屏, ESM7000 支持电阻触摸屏或电容触摸屏接口可选。下面分别列出这几种情况下 CN1 各个管脚对应的信号。

ESM7000 CN1 信号管脚定义, A 列:

		A 列		
	RGB +电阻屏	RGB +电容屏	LVDS +电阻屏	LVDS +电容屏
A1	ETH1_TRXON	←	←	←
A2	ETH1_TRXOP	←	←	←
А3	NC	←	←	←
A4	ETH1_TRX1N	←	←	←
A5	ETH1_TRX1P	←	←	←
A6	ETH1_TRX2N	←	←	←
A7	UART1_RXD	←	←	←
A8	UART1_TXD	←	←	←
A9	UART2_RXD ⁽¹⁾	←	←	←
A10	UART2_TXD ⁽¹⁾	←	←	←
A11	ETH1_TRX3N	←	←	←
A12	DBG_RXD ⁽²⁾	←	←	←
A13	DBG_TXD ⁽²⁾	←	←	←
A14	GND 电源地	←	←	←
A15	LCD_HSYNC	←	NC	NC
A16	LCD_VSYNC	←	NC	NC
A17	LCD_B2	←	NC	NC
A18	LCD_B3	←	LVDS_DATA0N	←
A19	LCD_B4	←	LVDS_DATA1N	←
A20	LCD_B5	←	LVDS_DATA2N	←
A21	LCD_B6	←	LVDS_CLKN	←
A22	LCD_B7	←	LVDS_DATA3N	←

注(1): UART2 端口缺省配置为 RS232 电平,可配置为 LVTTL(3.3V)电平。

注(2): 调试串口为 RS232 电平。

ESM7000 CN1 信号管脚定义, B 列:

		B 列		
	RGB +电阻屏	RGB +电容屏	LVDS +电阻屏	LVDS +电容屏
B1	防插反堵孔	←	←	←
B2	EHT1_LED_LINK	←	←	←
В3	ETH1_ LED_ACT	←	←	←
B4	ETH2_LED_LINK	←	←	←
B5	EHT2_LED_ACT	←	←	←
В6	ETH1_TRX2P	←	←	←
В7	UART3_RXD	←	←	←
В8	UART3_TXD	←	←	←
В9	UART4_RXD	←	←	←
B10	UART4_TXD	←	←	←
B11	ETH1_TRX3P	←	←	←
B12	TSC_YN	TSC_SCL	TSC_YN	TSC_SCL
B13	TSC_YP	TSC_SDA	TSC_YP	TSC_SDA
B14	GND 电源地	←	←	←
B15	BD_SPEC	←	←	←
B16	LCD_BLn	←	←	←
B17	LCD_G2	←	NC	NC
B18	LCD_G3	←	LVDS_DATA0P	←
B19	LCD_G4	←	LVDS_DATA1P	←
B20	LCD_G5	←	LVDS_DATA2P	←
B21	LCD_G6	←	LVDS_CLKP	←
B22	LCD_G7	←	LVDS_DATA3P	←

ESM7000 CN1 信号管脚定义, C 列:

	c列					
	RGB +电阻屏	RGB+电容屏	LVDS +电阻屏	LVDS +电容屏		
C1	ETH2_TRXON	←	←	←		
C2	ETH2_TRX0P	←	←	←		
С3	ETH2_CMT	←	←	←		
C4	ETH2_TRX1N	←	←	←		
C5	ETH2_TRX1P	←	←	←		
C6	GND电源地	←	←	←		
C7	USB3_DP	←	←	←		
C8	USB3_DN	←	←	←		
С9	USB4_DP	←	←	←		
C10	USB4_DN	←	←	←		
C11	GND电源地	←	←	←		
C12	TSC_XN	TSC_IRQn	TSC_XN	TSC_IRQn		
C13	TSC_XP	TSC_RSTn	TSC_XP	TSC_RSTn		
C14	GND电源地	←	←	←		
C15	LCD_DCLK	←	NC	NC		
C16	LCD_DE	←	NC	NC		
C17	LCD_R2	←	NC	NC		
C18	LCD_R3	←	NC	NC		
C19	LCD_R4	←	NC	NC		
C20	LCD_R5	←	NC	NC		
C21	LCD_R6	←	NC	NC		
C22	LCD_R7	←	NC	NC		

3.2 CN1 中所包含的接口描述

以太网接口(Ethernet)

ESM7000 的网口 1 为 1000M/100M/10M 自适应以太网口, 其信号说明如下:

管脚	网口1信号	功能简要说明	备注
A1	ETH1_TRX0N	-网络差分数据,通道 0	差分走线,阻抗 100Ω
A2	ETH1_TRX0P	+网络差分数据,通道0	左刀足线,阻抗 10012
A4	ETH1_TRX1N	-网络差分数据,通道 1	差分走线,阻抗 100Ω
A5	ETH1_TRX1P	+网络差分数据,通道1	左刀足线,阻抗 10002
A6,	ETH1_TRX2N	-网络差分数据,通道 2	差分走线,阻抗 100Ω
В6	ETH1_TRX2P	+网络差分数据,通道2	左刀足线,阻抗 10012
A11	ETH1_TRX3N	-网络差分数据,通道3	差分走线,阻抗 100Ω
B11	ETH1_TRX3P	+网络差分数据,通道3	左刀足线,阻抗 10012
B2	ETH1_LED_LINK	网络连接状态指示灯	最大驱动电流 6mA
В3	EHT1_LED_ACT	网络数据通讯指示灯	取八亚纳电机 bmA

ESM7000 的网口 2 为 100M/10M 自适应以太网口, 其信号说明如下:

管脚	网络2信号	功能简要说明	备注	
C1	ETH2_TRX0N	100M 网口差分模拟输出-	差分走线,阻抗 100Ω	
C2	ETH2_TRX0P	100M 网口差分模拟输出+	左刀足线,阻抗 10002	
C4	ETH2_TRX1N	100M 网口差分模拟输入-	差分走线,阻抗 100Ω	
C5	ETH2_TRX1P	100M 网口差分模拟输入+	左刀足线,阻抗 10002	
С3	ETH2_CMT	100M 网络变压器内侧公共端		
B4	ETH2_LED_LINK	网络连接状态指示灯	最大驱动电流 6mA	
B5	ETH2_LED_ACT	网络数据通讯指示灯	取八亚约电视 OIIIA	

为了提高管脚的利用率,以太网口的状态指示 LED 为单端高电平有效输出,外部可通过限流电阻,直接驱动网口指示灯。

异步串行接口(UART)

ESM7000 有 6 路应用串口,UART1~UART6。串口的设备名称在不同操作系统平台中有所不同,在 CE 系统中的串口编号从 COM2 开始(COM1 被 ActiveSync 占用),这样 ESM7000 的 6 路串口分别为 COM2 – COM7。在 Linux 系统中,串口的编号则从 ttyS1 开始。串口信号的命名 UART#_RXD 表示数据接收脚、UART#_TXD 表示数据发送脚。

各路串口的基本配置如下表所示:

管脚	信号名称	CE 设备	Linux 设备	功能简要说明
A7,A8	UART1	L"COM2:"	/dev/ttyS1	3 线制,3.3V 电平,支持 RTS/CTS 硬件流控
A9,A10	UART2	L"COM3:"	/dev/ttyS2	3 线制,RS232 电平接口。(缺省为RS232 电平(±6V),通过硬件配置也可支持3.3V电平,但需要在订货时说明)
B7,B8	UART3	L"COM4:"	/dev/ttyS3	3 线制,3.3V 电平
B9,B10	UART4	L"COM5:"	/dev/ttyS4	3 线制,3.3V 电平
D3,D4	UART5	L"COM6:"	/dev/ttyS5	3 线制,3.3V 电平,与 GPIO 复用管脚
D5,D6	UART6	L"COM7:"	/dev/ttyS6	3 线制,3.3V 电平,与 GPIO 复用管脚

除 UART1 支持 CTSn / RTSn 硬件流控外,其余串口均支持使用 GPIO 作为硬件方向控制 RTSn 信号(通过软件选择设置(GPIO6 – GPIO31)。

ESM7000 串口支持的通讯数据格式如下:

数	据位	校验位	停止位	波特率
7、	8	无校验 奇校验,偶校验	1、2	300bps~3Mbps

ESM7000 除了上述 6 路应用串口外,还有 1 路独立的调试串口(DBG_RXD, DBG_TXD)。在 CE 平台主要是用于输出系统的相关信息,而在 Linux 平台则作为系统的控制台 console。调试串口的电平为标准的 RS232电平(±6V),波特率为 115200bps,数据帧格式为 8-N-1。调试串口主要用于应用程序的开发调试,在客户设备中一般不需要引出。

USB 主控接口

CN1 包含 2 路 USB 主控接口(USB3_DP, USB3_DN)和(USB4_DP, USB4_DN),应用底板需为 USB 主控接口提供+5V 电源输出,并增加合理的 ESD 保护电路(相关电路可参考 ESMARC 应用评估底板)。

LCD 显示接口

ESM7000 支持两种模式的显示接口: 一种是面向低成本显示屏的 RGB 模式(缺省配置);一种是 LVDS

接口,支持高分辨率显示,且可驱动较长的显示带线。用户需要在购买时说明支持哪种接口。

RGB 模式的显示输出信号包括:

管脚	信号名称	简单描述
C17-C22	LCD_R2 – LCD_R7	红色分量输出信号,R7 为 MSB,R2 为 LSB。
B17-B22	LCD_G2 - LCD_G7	绿色分量输出信号,G7 为 MSB,G2 为 LSB。
A17-A22	LCD_B2 - LCD_B7	蓝色分量输出信号,B7 为 MSB,B2 为 LSB。
C15	LCD_DCLK	像素时钟信号,下降沿更新 RGB 数据,上升沿锁存数据
A15	LCD_HSYNC	行同步脉冲, 低电平有效。
A16	LCD_VSYNC	帧同步脉冲,低电平有效。
C16	LCD_DE	显示使能信号,高电平有效。

LVDS 显示输出信号包括:

管脚	信号定义	简单描述	备注	
A18	LVDS1_D0N	-LVDS 差分数据输出,通道 0	· 差分走线,阻抗 100Ω	
B18	LVDS1_D0P	+LVDS 差分数据输出,通道 0	左分足线,阻抗 1000	
A19	LVDS1_D1N	-LVDS 差分数据输出,通道 1	· 差分走线,阻抗 100Ω	
B19	LVDS1_D1P	+LVDS 差分数据输出,通道 1	左刀足线,阻抗 1000	
A20	LVDS1_D2N	-LVDS 差分数据输出,通道 2	· 差分走线,阻抗 100Ω	
B20	LVDS1_D2P	+LVDS 差分数据输出,通道 2	左刀足线,阻抗 1000	
A21	LVDS1_CLKN	-LVDS 差分时钟输出	· 差分走线,阻抗 100Ω	
B21	LVDS1_CLKP	+LVDS 差分时钟输出	左万疋线,阻机 1000	
A22	LVDS1_D3N	-LVDS 差分数据输出,通道 3	· 差分走线,阻抗 100Ω	
B22	LVDS1_D3P	+LVDS 差分数据输出,通道 3	左刀足线,阻机 1000	

LVDS 接口采用 PSWG 数据映射标准,串行数据与 RGB 的对应关系如下:

LVDS 输出	Slot 0	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6
LVDS_DATA0	G0	R5	R4	R3	R2	R1	RO
LVDS_DATA1	B1	В0	G5	G4	G3	G2	G1
LVDS_DATA2	DE	VS	HS	B5	B4	В3	B2
LVDS_DATA3	CTL	В7	В6	G7	G6	R7	R6

LVDS 接口兼容 18bit 和 24bit 模式。连接 18-bit 的 LCD 时,使用 LVDS_DATA0、LVDS_DATA1、LVDS_DATA2 和 LVDS_CLK。当连接 24-bit LCD 时,再加上 LVDS_DATA3。

ESM7000 支持的典型 LCD 显示格式包括:

分辨率	LCD 尺寸	简单描述
480×272	4.3"	高性价比
640×480	5.6" - 6.4"	
800×480	7" – 8"	ESM7000 缺省设置
800×600	8.4" - 10.4"	一般采用 LVDS 接口
1024×768	10.4" - 12.1"	一般采用 LVDS 接口

PWM 背光

ESM7000 提供了一路独立的背光控制信号 LCD_BLn,默认情况下 LCD_BLn 输出低平则点亮背光,高电平关闭背光。通过驱动软件配置,LCD BLn 可输出 PWM 信号用于实现背光亮度调节。

触摸屏接口

ESM7000 缺省配置为电阻触摸屏接口,可直接连接常用的 4 线电阻触摸屏,触摸屏的电阻要求在 200Ω 至 600Ω 这一范围。ESM7000 也可配置为支持 I2C 接口的电容触摸屏(用户在购买 ESM7000 时需要说明),目前支持的电容触摸屏驱动芯片包括 FT5x16 系列和 GT9xx 系列驱动芯片。

电阻触摸屏和电容触摸屏复用 CN1 的 B12\B13\C12\C13 管脚,复用关系如下:

管脚	电阻 触摸屏接口	电容 触摸屏I ² C接口	管脚	电阻 触摸屏接口	电容 触摸屏接口
B12	TSC_YN	TSC_SCL	C12	TSC_XN	TSC_IRQn
B13	TSC_YP	TSC_SDA	C13	TSC_XP	TSC_RSTn

3.3 ESM7000 的 CN2 信号定义

ESM7000 的 CN2 管脚,以通用数字 IO 和 ISA 总线作为其基本的功能。ESM7100/ESM7180 支持 PCIe x1 高速总线接口,当配置为 PCIe 总线时,主板将不再支持 USB_OTG 接口。下面分别列出这几种不同配置情况下 CN2 各个管脚对应的信号。另外由于 Windows CE 环境和 Linux 环境,对串口的称呼有所不同,均一并列出(通过":"分隔)。

ESM7000 CN2 插座 D 列的信号管脚定义,不同型号的管脚是完全一样的:

D列			
	ESM7000/ESM7080	ESM7100/ESM7180	
D1	GPIO0 / UART1_CTSn	←	
D2	GPIO1 / UART1_RTSn	+	
D3	GPIO2 / UART5_RXD	+	
D4	GPIO3 / UART5_TXD	+	
D5	GPIO4 / UART6_RXD	+	
D6	GPIO5 / UART6_TXD	+	
D7	GPIO6 / PWM1	+	
D8	GPIO7 / PWM2	+	
D9	GPIO8 / PWM3	+	
D10	GPIO9	+	
D11	GPIO10 / CAN1_RXD ←		
D12	GPIO11 / CAN1_TXD ←		
D13	GPIO12 / CAN2_RXD ←		
D14	GPIO13 / CAN2_TXD ←		
D15	GPIO14	←	
D16	GPIO15 / IRIG-B	←	
D17	GND电源地	←	
D18	USB1_DP ←		
D19	USB1_DN ←		
D20	USB2_DP	+	
D21	USB2_DN ←		
D22	BATT3V	+	

ESM7000 CN2 插座 E 列的 E2 - E13 为扩展接口,根据不同型号、不同的配置可支持精简 ISA 总线、低速 AD 接口或 8 通道同步采样 ADC。此外如果主板支持 PCIe 总线接口, E17 就为 PCIe 的 RXP 信号, 主板不支持 PCIe 接口时 E17 应悬空。

根据不同的配置情况,E列信号管脚定义如下所示:

	E列			
	8-bit精简ISA	8 路低速 AD 接口	8 通道同步采样 ADC	PCle x1
E1	GND电源地	←	←	←
E2	ISA_D0	ADC1_CH0	AIN0	
E3	ISA_D1	ADC1_CH1	AIN1	
E4	ISA_D2	ADC1_CH2	AIN2	
E5	ISA_D3	ADC1_CH3	AIN3	
E6	ISA_D4	ADC2_CH0	AIN4	
E7	ISA_D5	ADC2_CH1	AIN5	
E8	ISA_D6	ADC2_CH2	AIN6	
E9	ISA_D7	ADC2_CH3	AIN7	
E10	ISA_RDn	GND	GND	
E11	ISA_WEn	NC	AVDD	
E12	ISA_ADVn	NC	EVENT0	
E13	ISA_CSn	NC	EVENT1	
E14	GND电源地	←	←	←
E15	DBGSLn	←	←	←
E16	RESET_IN_OUTn	←	←	←
E17	NC	NC	NC	PCIE_RXP
E18	+5V电源输入	←	←	←
E19	+5V电源输入	←	←	←
E20	+5V电源输入	←	←	←
E21	+5V电源输入	←	←	←
E22	+5V电源输入	←	←	←

ESM7000 CN2 插座 F 列的信号管脚定义,不同型号有所不同:

F列			
	ESM7000/ESM7080	ESM7100/ESM7180	
F1	GPIO16 / SD_CLK	←	
F2	GPIO17 / SD_CMD	←	
F3	GPIO18 / SD_D0	←	
F4	GPIO19 / SD_D1	←	
F5	GPIO20 / SD_D2	←	
F6	GPIO21 / SD_D3	←	
F7	GPIO22 / SD_DETn	←	
F8	GPIO23 / Caputre	←	
F9	GPIO24 / IRQ1	←	
F10	GPIO25 / IRQ2	←	
F11	GPIO26 / I2C_SDA	←	
F12	GPIO27 / I2C_SCL	←	
F13	GPIO28 / SPI_MISO	←	
F14	GPIO29 / SPI_MOSI	←	
F15	GPIO30 / SPI_SCLK	←	
F16	GPIO31 / SPI_CSON	←	
F17	NC	PCIE_RXN	
F18	USB_OTG_VBUS	PCIE_TXP	
F19	USB_OTG_ID	PCIE_TXN	
F20	USB_OTG_DP	PCIE_CLKP	
F21	USB_OTG_DN	PCIE_CLKN	
F22	+5V电源输入	←	

3.4 CN2 中所包含的接口描述

通用数字 IO(GPIO)

ESM7000 共有 32 路通用数字 IO,即 GPIO。每路 GPIO 的方向可独立设置,在上电缺省状态下,所有 GPIO 管脚均为数字输入。大部分 GPIO 还与某种接口复用管脚资源,当应用程序打开相应的设备驱动程序时, 对应的管脚会自动切换到复用的功能管脚。

CN2 中的具有复用功能的 GPIO 如下表所示:

GPIO 信号	管脚复用功能	CE 设备	Linux 设备
GPIO0 – GPIO1	UART1 的 CTSn 和 RTSn	L"COM2:"	/dev/ttyS1
GPIO2 – GPIO3	UART5 的 RXD 和 TXD	L"COM6:"	/dev/ttyS5
GPIO4 – GPIO5	UART6 的 RXD 和 TXD	L"COM7:"	/dev/ttyS6
GPIO6	PWM1 脉冲输出	L"PWM1:"	/dev/pwm1
GPIO7	PWM2 脉冲输出	L"PWM2:"	/dev/pwm2
GPIO8	PWM3 脉冲输出	L"PWM3:"	/dev/pwm3
GPIO10 – GPIO11	CAN1的RXD和TXD	L"CAN1:"	can0
GPIO12 – GPIO13	CAN2的RXD和TXD	L"CAN2:"	can1
GPIO15	IRIG-B	L"IGB1:"	
GPIO23	Capture	L"CAP1:"	
GPIO24	IRQ1 中断请求输入	L"IRQ1:"	/dev/irq1
GPIO25	IRQ2 中断请求输入	L"IRQ2:"	/dev/irq2
GPIO26 – GPIO27	I2C 总线信号 SDA 和 SCL	L"I2C1:"	/dev/i2c-0
GPIO28 – GPIO31	SPI 接口,4 线制	L"SPI1:"	/dev/spidev1.0

USB OTG 接口

ESM7000 包含一个标准 USB OTG 接口, 共 4 条引线:

管脚	USB OTG 接口定义	简要说明	备注
F18	USB_OTG_VBUS	双向电源	
F19	USB_OTG_ID	连接类型标志	
F20	USB_OTG_DP	USB OTG 差分信号+	差分走线,阻抗 90Ω
F21	USB_OTG_DN	USB OTG 差分信号-	左分足线,阻抗 90tf

上述 4 条引线可直接接到底板的微型 AB 插座(mini-AB)。在通常情况下,若连接带线使 USB_OTG_ID 变低(即微型 A 插头),则 ESM7000 将作为主控端;若连接带线使 USB_OTG_ID 悬空(即微型 B 插头),则 ESM7000 将作为设备端。在实际使用中,USB OTG 将通过主机通信协议(HNP)根据实际连接的设备类型,动态切换

主机和设备角色。因此即使 USB OTG ID 的电平与设备类型不符,同样可以实现正常连接。

当 ESM7000 作为主控端时,将通过 USB_OTG_VBUS 向连接的 USB 设备提供+5V 电源,电流不超过 500mA。 当 ESM7000 作为设备端时,外部 USB 主控将通过 USB_OTG_VBUS 输入 5V 电源,为 ESM7000 的 USB PHY 提 供电源。

USB 主控接口

CN2 包含 2 路 USB 主控接口(USB1_DP, USB1_DN)和(USB2_DP, USB2_DN),应用底板需为 USB 主 控接口提供+5V 电源输出。

SD 卡接口

ESM7000 的 SD 卡信号与 GPIO 是复用的,复用关系如下:

管脚	GPIO / SD 信号	SD 接口功能描述	备注
F1	GPIO16 / SD_CLK	SD 时钟信号	
F2	GPIO17 / SD_CMD	SD 命令信号	
F3	GPIO18 / SD_D0		など.まみ :
F4	GPIO19 / SD_D1	SD 卡数据信号	等长走线
F5	GPIO20 / SD_D2	30 下级据信号	
F6	GPIO21 / SD_D3		
F7	GPIO22 / SD_DETn	SD 卡侦测管脚,低电平有效	

ESM7000 的管脚 F1 至 F7, 默认配置为 GPIO 功能,如果将 ESM7000 的系统配置管脚(请参考 2.4 节)接 地, ESM7000 将支持 SD 卡功能, 而对应的 GPIO 则不能再被使用。

扩展接口

ESM7000 主板的扩展接口占用 CN2 的 12 条管脚(E2-E13), 支持 3 种接口模式:

管脚	精简 A 总线(缺省模式)	8 通道低速 ADC 接口 (可选模式)	8 通道同步采样 ADC 接口 (ESM7080/ESM7180)
E2	ISA_D0(LSB)	ADC1_CH0,AD 通道 1	AINO
E3	ISA_D1	ADC1_CH1,AD 通道 2	AIN1
E4	ISA_D2	ADC1_CH2,AD 通道 3	AIN2
E5	ISA_D3	ADC1_CH3,AD 通道 4	AIN3
E6	ISA_D4	ADC2_CH0,AD 通道 5	AIN4
E7	ISA_D5	ADC2_CH1,AD 通道 6	AIN5
E8	ISA_D6	ADC2_CH2,AD 通道 7	AIN6
E9	ISA_D7(MSB)	ADC2_CH3,AD 通道 8	AIN7
E10	ISA_RDn	GND	GND
E11	ISA_WEn	-	AVDD
E12	ISA_ADVn	-	EVENTO
E13	ISA_CSn	-	EVENT1

扩展接口选项 1- 精简 ISA 总线

精简 ISA 总线主要是提供一种便捷的外设扩展总线,典型的扩展外设包括多路串口、多路 CAN 接口、多路网络接口、客户定制的 FPGA 等等,可选用 GPIO 作为外设模块的硬件中断请求输入。这样精简 ISA 总线基本信号如下表所示:

管脚	ISA 信号 简要描述	
E2 – E9	E2 - E9	
E10	ISA_RDn	总线周期读脉冲,低电平有效。
E11	E11 ISA_WEn 总线周期写脉冲,低电平有效。	
E12	E12 ISA_ADVn 地址总线有效信号,低电平有效。	
E13	ISA_CSn	总线周期片选控制信号,低电平有效。

在实际应用中,精简 ISA 总线通常需与中断信号配合使用,这些中断信号与 GPIO 复用管脚: GPIO24/IRQ1、GPIO25/IRQ2、GPIO8/IRQ3、GPIO9/IRQ4。英创公司可提供常用的扩展模块与 ESMARC 主板的精简 ISA 总线直接相连,方便客户快速搭建高性能工业通讯管理系统,这些扩展模块包括:

ISA 扩展模块型号	简要描述	
ETA503	4路 UART 串口扩展模块,每路均为9线制串口。	

ETA508	8路 UART 串口扩展模块,每路均为 3线制串口。	
ETA704	4路 CAN 总线接口扩展模块。	
ETA728	2 路 100M/10M 以太网接口扩展模块。	

扩展接口选项 2-8 路低速 AD

ESM7000 可选择支持 8 路 14 位 ADC 输入, 其在 CE 和 Linux 系统中的设备名称如下表所示:

管脚	CE 设备名称	Linux 对应设备节点	简要描述
E2	L"ADC1:"	/sys/bus/iio/devices/iio:device0/in_voltage0_raw	
E3	L"ADC1:"	/sys/bus/iio/devices/iio:device0/in_voltage1_raw	
E4	L"ADC1:"	/sys/bus/iio/devices/iio:device0/in_voltage2_raw	0.运送44.64.00
E5	L"ADC1:"	/sys/bus/iio/devices/iio:device0/in_voltage3_raw	8 通道 14 位 ADC ADC 基准电压 1.8V
E6	L"ADC2:"	/sys/bus/iio/devices/iio:device0/in_voltage4_raw	ADC 墨准电压 1.8V 输入模拟信号范围 0-1.8V
E7	L"ADC2:"	/sys/bus/iio/devices/iio:device0/in_voltage5_raw	棚/(探水后 夕 旭田 0-1.8)
E8	L"ADC2:"	/sys/bus/iio/devices/iio:device0/in_voltage6_raw	
E9	L"ADC2:"	/sys/bus/iio/devices/iio:device0/in_voltage7_raw	

要获得最好的精度,需要对 ADC 进行标定。

扩展接口选项 3-8 通道同步采样 ADC

ESM7080/ESM7180 上集成了一片 TI 公司的 ADS8588S, 支持双极性输入的 16 位、8 通道同步采样 ADC, 最高采样 200kSPS。其管脚定义如下:

管脚	信号定义	信号说明	简要描述
E2	AIN0	模拟通道 1	具有集成模拟前端的 16 位 ADC
E3	AIN1	模拟通道 2	同步采样: 8 通道 可软件设定双极性输入: ±10V 和 ±5V
E4	AIN2	模拟通道 3	输入阻抗: 1MΩ
E5	AIN3	模拟通道 4	7kV 静电放电 (ESD) 过压输入钳位 出色的性能:
E6	AIN4	模拟通道 5	-200kSPS 的最大吞吐量(所有通道)
E7	AIN5	模拟通道 6	-差分非线性 (DNL): ±0.35 最低有效位 (LSB); 积分非线性 (INL): ±0.45 LSB
E8	AIN6	模拟通道 7	-信噪比 (SNR): 96.4Db; 总谐波失真 (THD): 114dB

英创信

E9	AIN7	模拟通道 8	
E10	GND	公共地	
E11	AVDD	模拟电源	由外部提供+5V 电源
E12	EVENT0		
E13	EVENT1		

要获得最好的精度,需要对 ADC 进行标定。

PCIe x1 高速接口

ESM7100/ESM7180 支持 PCle x1 高速接口,遵循 PCle 1.1、PCle 2.0 规范。根据实际电路情况,数据率可在 1.5Gbps / 2.5Gbps / 5Gbps 变化。ESM7100/ESM7180 的 PCle 接口,主要应用于支持 M.2 规范的 NVMe 固态硬盘,应用层数据读写速度可至少达 100MB/s,完全满足嵌入式系统的应用需求。PCle x1 管脚信号说明如下:

管脚	PCle x1 信号	简要描述	简要描述
E17	PCIE_RXP	PCIe 差分数据输入+	差分走线,特征阻抗 85Ω
F17	PCIE_RXN	PCIe 差分数据输入-	左刀足线,苻仙阻抗 8512
F18	PCIE_TXP	PCIe 差分数据输出+	差分走线,特征阻抗 85Ω
F19	PCIE_TXN	PCIe 差分数据输出-	左刀足线,苻仙阻抗 8512
F20	PCIE_CLKP	PCle 差分时钟输出+	差分走线,特征阻抗 100Ω
F21	PCIE_CLKN	PCle 差分时钟输出-	左刀足线,付证阻抗 10011

其他控制信号

RESET_IN_OUTn 双向复位信号,系统上电复位时,ESM7000 会驱动 RESET_IN_OUTn 输出低电平,可以用这个信号对外设进行复位。ESM7000 正常工作时,RESET_IN_OUTn 作为系统复位输入,如果将RESET_IN_OUTn 拉低,将复位 ESM7000。同时,如果 ESM7000 在正常工作时发生看门狗复位,RESET_IN_OUTn 将输出 80us 左右的低电平,用户可以利用这个信号对外设进行复位。

RESET_IN_OUTn 不用时,可悬空。

DBGSLn 信号用于选择系统启动的工作状态,在应用底板上将 DBGSLn 接地并启动系统时,ESM7000 将进入调试状态; DBGSLn 悬空并启动系统时,ESM7000 将进入运行状态,若此时文件 userinfo.txt 包含有效信息,客户的应用程序将被启动。关于运行/调试模式的详细说明,请参考《ESM7000 工控主板使用必读》。

4. 基本电气特性

在客户的应用设计中,ESM7000 是作为整个系统的部件之一,与客户的应用底板、电源等其他部件协同工作的。因此在设计中,需要详细了解 ESM7000 各个管脚的电气特性,以做到系统各个部件间的各项指标的合理配合。

4.1 额定参数

参数名称	简要说明	最小值	最大值	单位
VCC	主板供电,+5V 电源输入	-0.3	+5.5	V
BATT3V	RTC 后备时钟供电	-	+5.5	V
数字 IO	数字 IO 包括所有 32 位 GPIO、3.3V 电平的所有串口、ISA 总线、BD_SPEC、RESET_IN_OUTn、LCD_BLn、DBGSLn、RGB 数字显示接口	-0.5	+3.6	V

4.2 静电保护

参数名称	测试条件	典型值	单位
ESD(GPIO)	人体模型(HBM) 充电器模型(CDM)	2 0.5	
	人体模型(HBM)	±15	
ESD(RS232)	IEC 1000-4-2 空气放电	±15	KV
	IEC 1000-4-2 接触放电	±8	
ESD(网口 1)	人休模型(HBM)	±2	ΚV
[L3D([**1 1]	充电器模型(CDM)	±0.3	
	人休模型(HBM)	±5	
ESD(网口 2)	IED61000-4-2 空气放电	±15	
	IED61000-4-2 接触放电	±8	

4.3 推荐的操作电压

参数名称	简要说明	最小值	典型值	最大值	单位
VCC	主板供电	4.75	5.0	5.25	V
BATT3V	RTC 后备时钟供电	1.8	3.0	4.3	٧

4.4 功耗指标

ESM7000 功耗	测试条件	典型值	最大值	单位
	CPU 负载<10%	175 -		
主板电源消耗	CPU 单核负载 50%, 双网口工作并且连接一个 U 盘	270	270 -	
(不含任何外设)	CPU 双核负载 90%, 双网口工作并且连接一个 U 盘	300	-	
	最大功耗		-	Α
后备电池电源消耗	主板断电(BATT3V = 3V)	-	1	uA

注:

- 1、测试系统: ESM7000 V1.1(Linux), ESMARC EVB V8.2
- 2、当主板接通电源后,不消耗后备电池电量。
- 3、测试中使用 7"RGB TFT LCD, 分辨率 800x480。

4.5 RS232 输入输出特性

RS232 电平串口的输入输出(RX/TX)特性如下表所示:

参数	测试条件	最小值	典型值	最大值	单位
输入电压		-30		30	V
输入阻抗		3	5	7	kΩ
输出电压	负载条件: 3kΩ	±5	±5.2		٧
输出阻抗		300			Ω
输出短路电流			±15		mA
支持最高波特率	R_L =3k Ω to 7K Ω			460	Kbps
大川 秋间	C _L = 50pF to 1000pF			700	Kops

4.6 以太网口的基本特性

ESM7000 网口 2 基本电气参数

参数	测试条件	典型值	单位
差分输出电压	100BASE-TX 模式	2.0	٧
差分输出电流	100BASE-TX 模式	26	mA
差分输出电压	10BASE-T 模式	2.5	V
ETH2_CMT	共模偏置电压, 100Ω 终端电阻	3.3	V

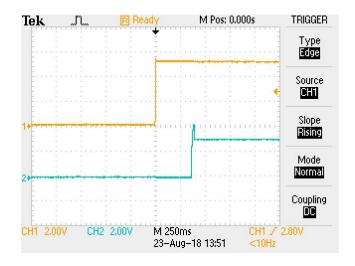
4.7 数字 IO 的基本直流电气参数

ESM7000 的数字 IO 包括所有 32 位 GPIO、所有 3.3V 电平的串口、ISA 总线、BD_SPEC、RESET_IN_OUTn、LCD_BLn、DBGSLn、RGB 数字显示接口、电容触摸屏接口。它们的直流电气参数如下表所示:

参数	简要说明	最小值	典型值	最大值	单位
V _{IL}	输入低电平	0		0.9	٧
V _{IH}	输入高电平	2.31		3.3	٧
V _{HYS}	滞回电压	0.15			٧
V _{OL}	输出低电平	0		0.66	٧
V _{OH}	输出高电平	2.65		3.3	V
Io	驱动电流		±6		mA

ESM7000 的部份数字 IO, 缺省配置了上拉电阻, 配置情况如下:

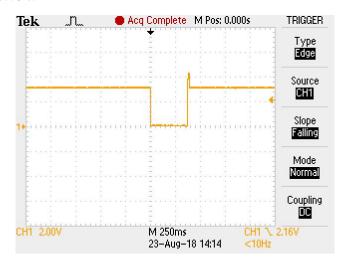
数字 IO 信号	上拉电阻	
RESET_IN_OUTn	1ΚΩ	
BD_SPEC、LCD_BLn、DBGSLn、	47ΚΩ	
32 位 GPIO,3.3V 电平串口	100ΚΩ	


4.8 LVDS 接口直流电气特性

参数	测试条件	最小值	典型值	最大值	单位
差分输出电压	R _L = 100Ω	250	345	450	mV
输出短路电流	$V_{OUT} = 0V$, $R_L = 100\Omega$		-3.5	-5	mA
输出高阻时电流	Power Down = 0V,		±1	±10	uA

5. 基本时序及相关说明

5.1 ESM7000 复位信号


ESM7000 的复位信号 RESET_IN_OUTn 是双向输入输出管脚,在系统上电后, RESET_IN_OUTn 会保持 350ms 左右的低电平(如下图),应用底板可以用这个信号对外设进行复位。

ESM7000 主板上电时 RESET_IN_OUTn 时序 (CH1: 5V 电源, CH2: RESET_IN_OUTn 信号)

ESM7000 正常工作时,RESET_IN_OUTn 作为系统复位输入,如果将 RESET_IN_OUTn 拉低, ESM7000 会 关闭核心板上的所有电源(后备时钟电源除外),在释放 RESET_IN_OUTn 后,ESM7000 会重新上电启动,完成一个彻底的断电复位过程。

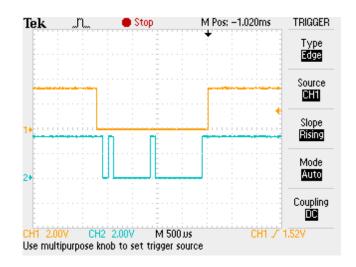
此外,如果系统在正常工作时发生看门狗复位,RESET IN OUTn 将输出 350us 左右的低电平脉冲,用户 可以利用这个信号对外设进行复位。

ESM7000 看门狗复位时, RESET IN OUTn 将输出 350us 低电平脉冲

RESET_IN_OUTn 禁止连接任何上拉或下拉电阻,也不要连接容量超过 0.1uF 的电容。将 RESET_IN_OUTn 拉低的方法通常是通过机械按键直接接地,或使用开漏电路。RESET IN OUTn 不用时请悬空。

GPIO 上电时序 5.2

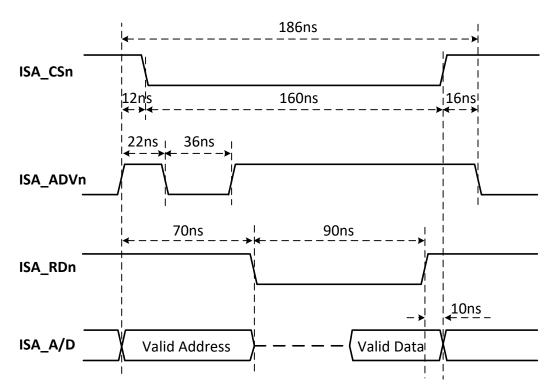
ESM7000 所有 GPIO 在上电复位或看门狗复位的过程中,都为 100KΩ 下拉输入状态(低电平),复位完成 后切换为 100KΩ 上拉输入状态(高电平)。系统上电启动过程中,GPIO 的时序如下图所示:

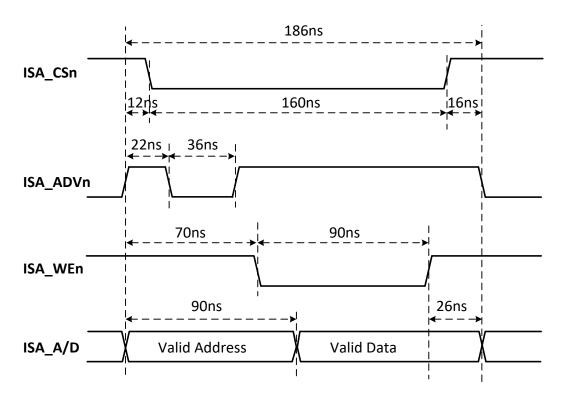

GPI0 上电时序类型

(CH1: 5V 电源, CH2: GPIO 信号)

GPIO 在系统上电大约 700ms 后,被设置为 100KΩ上拉输入状态(上拉到 3.3V 高电平),如果需要 ESM7000 的 GPIO 在系统的整个上电过程中保持统一的电平,可在相应的 GPIO 到地之间连接 10K 的下拉电阻,这样 GPIO 在整个上电过程中就会保持为低电平输入状态。

5.3 串口 RTS 信号时序说明


ESM7000 的 6 路串口均支持通过软件指定任意一位 GPIO(GPIO6 – GPIO31)作为硬件方向控制信号 RTSn,RTSn 最常用来作为 RS485 电路的收发方向控制信号。ESM7000 的 RTSn 信号为低电平有效,在串口无数据发送时保持为高电平,在串口发送数据之前输出低电平,当串口发送完最后一位数据后立刻切换为高电平。下图是串口发送数据时 TXD 与 RTSn 的典型时序图。(图中所示测试波形串口配置为 9600-8-N-1,发送两个字节 0x01,0x01)


串口 TXD 与 RTSn 时序关系 (CH1: RTSn, CH2: 串口 TXD)

5.4 ISA 总线读写时序

ESM7000 精简 ISA 总线采用地址/数据复用方式,总线周期 200ns,总线操作时先传地址,再传数据,ISA 总线使用 DMA 数据传输,传输速度可达到 5MB/s。

ESM7000 精简 ISA 总线读时序

ESM7000 精简 ISA 总线写时序

6. 设计注意事项

- 可靠的电源是系统长期稳定运行的基本保障,用户在设计自己的整机系统时,应充分考虑 ESM7000 主板功耗和所连接的外设情况,选择足够功率的电源。以 ESM7000 评估套件加上 7 寸 LCD 为例, 典型情况下应选择 5V/3A 的电源为整个评估系统供电,如果再连接 3G/4G 模块或 WiFi 模块,则应 考虑选择 5V/4A 的电源为系统供电。
- 2. ESM7000 上 CN1、CN2 的大部分信号均直接来自于系统的核心 CPU 芯片 i.MX6,包括 GPIO 信号、 LCD 的信号。它们抗人体静电的能力只有 2kV, 这不是一个很高的阈值, 冬季人体静电达到 4-5kV 是很容易发生的。
- ESM7000 的数字 IO 输入电压极限为 3.6V,接入超过 3.6V 的电压将导致 CPU 损坏。
- 尽管单个 GPIO 的驱动能力能够达到±6mA,但对于需要多个 GPIO 满负荷驱动外设的情况,强烈建 议在应用底板上增加驱动芯片(如 74LVC245),通过把电流负载转移到驱动芯片上,来保护 ESM7000 的 GPIO 管脚。
- 5. ESM7000 的 USB 接口,在拔插过程中,会产生瞬间的浪涌电压,该电压有可能损坏 ESM7000 的 USB 数据收发单元, 因此强烈推荐客户的应用底板参考 ESM7000 开发评估底板的相关电路, 在 USB 接口处增加 ESD 保护芯片,并在电源回路中串入磁珠。

7. 技术支持

成都英创信息技术有限公司是一家从事嵌入式工控主板产品研发、市场应用的专业公司。用户可通过 公司网站、技术论坛、电话、邮件等方式来获得有关产品的技术支持。公司联系方式如下:

地址:成都市高新区高朋大道 5号博士创业园 B座 407# 邮编:610041

联系电话: 028-86180660 传真: 028-85141028

网址: http://www.emtronix.com 电子邮件: support@emtronix.com

8. 版本历史

版本	适用主板(PCB)	简要描述	日期
V1.0	ESM7000 V1.2	创建 ESM7000 工控主板数据手册。	2018-8
V1.1	ESM7000 V1.2	ESM7000 升级为工业级	2020-7
V1.2	ESM7000 V1.2	增加 ADC 相关说明	2020-12
V1.3	ESM7000 V1.4	增加 Capture 说明	2021-5
V2.0	ESM7000 V2.0 ESM7080 V1.1	调整 PCIe 管脚定义,符合 ESMARC V4.0 规范增加 ESM7080 / ESM7180 相关说明	2022-7
V2.1	ESM7000 V2.0 ESM7080 V1.1	去掉 ESM7200 相关说明	2022-12

注意:本手册的相关技术内容将会不断的完善,请客户适时从公司网站下载最新版本的数据手册,恕不另行通知。