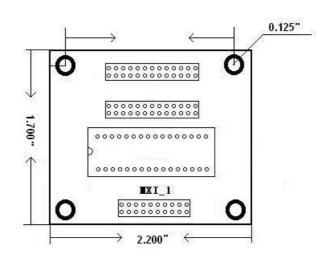


ETA724 使用手册

#### 一、ETA724 简介


ETA724 是和英创嵌入式模块配合使用,通过精简 ISA 总线扩展的 I/O 模块,同时可以配置成并行打印机接口,如果用户从英创公司购买任何一款评估底板,则可以将 ETA724 的 MXI 1 接口和评估底板的 MXI 1 接口连接即可使用。

82C55 有几种工作模式,本文中只讲述其作为基本 I/O 使用的模式,即 Mode 0。下图 是以 82C55 为例进行 I/O 扩展的电路图



### 二、硬件接口说明

ETA724 板上共有 3 个硬件接插座,以下是 ETA724 的外观示意图、各硬件接口在板上的位置以及详细的使用说明:



ETA724 外观示意图及机械尺寸

标注尺寸: inch (1 inch = 2.54cm = 1000mil)

| 接插座编号 | 接插座类型     | 主要功能简述                      |  |  |  |
|-------|-----------|-----------------------------|--|--|--|
| CN1   | IDC 20pin | 精简 ISA 接口总线 MXI_1,和评估底板配合使用 |  |  |  |
| CN2   | IDC 26pin | 24 位 I/0 接口                 |  |  |  |
| CN3   | IDC 26pin | 并行打印接口                      |  |  |  |

注: 所有的接插座, 方形焊盘为1脚

## 各硬件接口的定义:

CN1 是扩展总线接口,为标准 IDC 插针,交错排列,定义如下:

|                 | CN1  |     |              |  |
|-----------------|------|-----|--------------|--|
| 信号名称及简要描述       | PIN# | PIN | 信号名称及简要描述    |  |
|                 |      | #   |              |  |
| RESET#,复位输出,低有效 | 1    | 2   | A0, 地址总线     |  |
| XD0,数据总线,LSB    | 3    | 4   | A1, 地址总线     |  |
| XD1,数据总线        | 5    | 6   | A2, 地址总线     |  |
| XD2,数据总线        | 9    | 10  | A3, 地址总线     |  |
| XD3,数据总线        | 7    | 8   | A4, 地址总线     |  |
| XD4,数据总线        | 11   | 12  | WE#,写信号控制线   |  |
| XD5,数据总线        | 13   | 14  | RD#,读信号控制线   |  |
| XD6,数据总线        | 15   | 16  | CS1#,I/O 片选线 |  |
| XD7,数据总线,MSB    | 17   | 18  | VCC, 电源输出    |  |
| IRQ5,中断请求       | 19   | 20  | GND,公共地      |  |

# CN2 是 24 位 I/O 接口,为标准 IDC 插针,交错排列,定义如下:

|                 | CN2  |     |                |  |
|-----------------|------|-----|----------------|--|
| 信号名称及简要描述       | PIN# | PIN | 信号名称及简要描述      |  |
|                 |      | #   |                |  |
| PA0,可软件定义输入或输出  | 1    | 2   | PB0,可软件定义输入或输出 |  |
| PA1, 可软件定义输入或输出 | 3    | 4   | PB1,可软件定义输入或输出 |  |
| PA2,可软件定义输入或输出  | 5    | 6   | PB2,可软件定义输入或输出 |  |
| PA3,可软件定义输入或输出  | 9    | 10  | PB3,可软件定义输入或输出 |  |
| PA4,可软件定义输入或输出  | 7    | 8   | PB4,可软件定义输入或输出 |  |
| PA5,可软件定义输入或输出  | 11   | 12  | PB5,可软件定义输入或输出 |  |
| PA6,可软件定义输入或输出  | 13   | 14  | PB6,可软件定义输入或输出 |  |
| PA7,可软件定义输入或输出  | 15   | 16  | PB7,可软件定义输入或输出 |  |
| PC0,可软件定义输入或输出  | 17   | 18  | PC4,可软件定义输入或输出 |  |
| PC1,可软件定义输入或输出  | 19   | 20  | PC5,可软件定义输入或输出 |  |
| PC2,可软件定义输入或输出  | 21   | 22  | PC6,可软件定义输入或输出 |  |
| PC3,可软件定义输入或输出  | 23   | 24  | PC7,可软件定义输入或输出 |  |

| GND,公共地 | 25 | 26 | VCC, +5v 电源输入 |
|---------|----|----|---------------|
|---------|----|----|---------------|

CN3 是由 I/O 仿真的并行打印接口,为标准 IDC 插针,定义如下:

| <b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b><br><b></b> | CN3  |      | <b>尼贝</b>    |  |
|------------------------------------------------------------------------------------------------------------|------|------|--------------|--|
| 信号名称及简要描述                                                                                                  | PIN# | PIN# | 信号名称及简要描述    |  |
| PC0, STRB#                                                                                                 | 1    | 14   | PC1, AUTOLF# |  |
| PA0, PD0                                                                                                   | 2    | 15   | PB3#, ERR#   |  |
| PA1, PD1                                                                                                   | 3    | 16   | PC2, INIT#   |  |
| PA2, PD2                                                                                                   | 4    |      | PC3, SLIN#   |  |
| PA3, PD3                                                                                                   | 5    | 18   | GND          |  |
| PA4, PD4                                                                                                   | 6    | 19   | GND          |  |
| PA5, PD5                                                                                                   | 7    | 20   | GND          |  |
| PA6, PD6                                                                                                   | 8    | 21   | GND          |  |
| PA7, PD7                                                                                                   | 9    | 22   | GND          |  |
| PB6, ACK#                                                                                                  | 10   | 23   | GND          |  |
| PB7, BUSY                                                                                                  | 11   | 24   | GND          |  |
| PB5, PE                                                                                                    | 12   | 25   | GND          |  |
| PB4, SLCT                                                                                                  | 13   | 26   | NC           |  |

### 三、软件配置及操作

82C55 可扩展 24 路 I/O, 共分三个端口 PA、PB、PC, 在 82C55 内部还有一个控制端口。在默认状态下,CS1 片选地址段为 300H—31FH, PA 为 300H, PB 为 301H, PC 为 302H, 控制端口为 303H, 由于 82C55 只占用 4 个端口地址, 因此 304H-307H、308H-30BH、30CH-30FH 也同样选通上述 4 个端口。在 82C55 应用之前,必须对其进行初始化,也就是向控制端口 303H 里写入控制字,用以配置各端口的输入输出,控制字及相关定义如下:

| 控制字(16 进制) | PA  | PB  | PC  |
|------------|-----|-----|-----|
| 80H        | OUT | OUT | OUT |
| 82H        | OUT | IN  | OUT |
| 89H        | OUT | OUT | IN  |
| 8ЬН        | OUT | IN  | IN  |
| 90H        | IN  | OUT | OUT |
| 92H        | IN  | IN  | OUT |
| 99Н        | IN  | OUT | IN  |
| 9Bh        | IN  | IN  | IN  |

写控制字的 C 语言语句为:

```
outportb (0x303, ctrl_byte);
```

对 PA、PB、PC 三个 I/O 端口操作的 C 语言语句如下:

对 PA 口的操作:

读 PA: PAValue = inportb (300h);

写 PA: outportb(300h, value);

对 PB 口的操作:

读 PB: PBValue = inportb (301h);

写 PB: outportb(301h, value);

对 PC 口的操作:

读 PC: PCValue = inportb (302h);

写 PC: outportb(302h, value);